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STATISTICAL MECHANICAL THEORIES OF TRANSPORT PROPERTIES
by Richard S. Brokaw

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
INTRODUCT 1ON

A detailed exposition of statistical mechanical theories of transport
properties could easily fill a volume of many hundreds of pages. Such a
treatise would involve difficult and sophisticated mathematics. And the
presentation of this material could easily require one hundred hour-long
lectures, a year-long course at the university graduate school level.

Fortunately our interests here are more modest. This conference is
concerned with the properties of steam; we are interested in theories of
transport properties insofar as theory can aid in selecting properties of
water and steam. Consequently | will dwell principally on results rather
than theoretical developments per se; results which have some bearing on
the properties of steam.

The theories will be considered in turn as they relate to the
following regimes:

1. The dilute gas

2. The dissociating gas (in the case of steam, temperatures in

excess of 1700°C at atmospheric pressure)
3. The moderately dense gas
L. The gas in the critical region

5. The liquid state.
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In all regimes save the last -the liquid state -theory may be of some

help in selecting, correlating or predicting transport properties of steam.

THE DILUTE GAS
Our discussion of the dilute gas will consider, first of all, the
theory for monatomic gases, and then indicate what modifications are

available to treat polyatomic gases.

Monatomic Gases
For dilute monatomic gases we have a very complete theory due to
Chapman and Enskog. Their rigorous development is based on knowledge of
the distribution function fi(g, Vi, t). This function represents the num-
ber of molecules of species i which lie in a unit volume about the point r
and have velocities within a unit range about V; at time t. |If the gas is
at equilibrium-that is, there are no gradients of composition, velocity,
or temperature - then f;(r, V;, t) reduces to the Maxwellian distribution

3
£ = n;(m;/2 kT)  exp (-miViz/ZkT), When the system is not at equilibrium

i
the distribution function satisfies the Boltzmann integro-differential
equation,

We are interested in the properties of gases which are only slightly
different from equilibrium, since it is only under these conditions that
the fluxes are linear in the gradients so that the usual definitions of the

transport coefficients apply. In this event the distribution function is

nearly Maxwellian, and the Boltzmann equation can be solved by a perturbation




method due to Chapman and Enskog. The solutions are then used to obtain
expressions for the fluxes and the transport coefficients. The method is
set forth in great detaii in the treatises of Chapman and Cowiing (i) and
Hirschfelder, Curtiss, and Bird (2).

The theory of Chapman and Enskog has the following restrictions: only

binary collisions are considered, so that the results do not apply at

densities where three-body collisions become important; all collisions are
elastic; and pairs of molecules interact according to a2 single central force
law so that the force depends only on the distance of separation between
the molecules. Thus the Chapman-Enskog theory applies strictly only at
moderate pressures and only to the noble gases.

The Chapman-Enskog theory yields the following expressions for the

transport properties of dilute monatomic gases (3):

Viscosity
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Thermal conductivity
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Self-diffusion coefficient
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These formulas involve quantities such as the atomic mass m, the Boltzmann

constant k, the temperature T, the heat capacity CV(=% k), and the density




[~ - Note that the viscosity and thermal conductivity are independent of
density, or pressure, whereas the self-diffusion coefficient is inversely
proportional to the density.

Equations (1)-(3) also involve cross sections, or more properly,
collision integrals d’ﬁjﬁz’z) and L(i)’]) , and to compute these the
intermolecular force law must be known.

For a spherically symmetric potential, which may be written in a

dimensionless form as

¢<H cf) —f(rra) = -P(r*) )

the collision integrals are obtained by a triple integration. (Here &
is an energy and 0" is a distance characteristic of the potential.) First

it is necessary to compute the angle of deflection:
oo
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where b*~= b/g=is the reduced impact parameter. (The impact parameter b is

the distance of closest approach in the absence of the potential¢ .)

alo
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Further, ro = ro /07, where ry is the distance of closest approach in the

.

%2 .
presence of the potential, and g =~ = % mgz/é is the reduced relative

kinetic energy (g is the initial relative speed of the colliding molecules).
x*®
Once the angle of deflection has been obtained as a function of g and

oo

b”, a velocity~dependent cross section is computed:
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Flnally, the Q( ) are averaged over all velocities, with an

appropriate weighting factor:

160
Ln-‘(ﬂ 5)'*' )F) 4 e -9 71**251'-7>Q
= (s 4+1)IT¥**2 (7
0
C 2 (1,s)% )
Thus the collision integrals g are a function of reduced tempera-
ture T*E_- kT/e.

Hence the problem of a priori prediction of transport coefficients
has three layers: first, a kinetic theory layer, which relates the
transport coefficients to the collision cross sections, via equations
(1)-(3); second, a cross section layer, which relates the collision inte-
grals to the intermolecular forces via equations (5)-{(7); and finally the
core problem of determining the intermolecular forces (equation (4)).

In principle, the intermolecular forces can be calculated from quantum
mechanics, given only fundamental constants such as the electronic charge
and mass and Planck's constant. In practice it is not yet possible to
carry out such calculations with sufficient accuracy except for simple
systems, such as two hydrogen atoms or perhaps two helium atoms (4). For
more complicated systems severe approximations have to be introduced so
that the results are not likely to be quantitatively accurate. It is to be

hoped, however, that the calculations are qualitatively correct and thus



indicate the general form of the intermolecular potential.

Since the intermolecular force law is not known a ﬁriori, the usual
procedure is to let theory indicate the probable form of the force law,
assume some analytic form for the potential which has the correct theoreti-
cal behavior, and use experimental data to evaluate the adjustable parameters
in the analytic potential. Experimental information from transport proper-
ties, second virial coefficients, and molecular beam scattering can be
used in this fashion (5). The collision integrals have now been calculated
for a number of analytic potentials; available tabulations of collision
integrals have been summarized recently by Mason (6).

Despite the fact that the theory for dilute monatomic gases seems
well established there have been experimental anomalies which have only
recently been resolved. This is illustrated in figure 1, where viscosity
data for argon are present. (The quotient of viscosity and temperature is
plotted since this function is less temperature dependent than the vis-
cosity itself so that discrepancies are more clearly revealed.) The open
symbols are experimental data from the older literature due to Trautz and
Binkele (7) (triangles), Trautz and Zink (8) (squares), and Vasilesco (9)
(circles). These data are not in accord with viscosities calculated by
Amdur and Ross (10) from a potential energy function deduced from high
energy atomic beam scattering experiments (11). Very recent experimental
data, shown as filled symbols, indicate that the older viscosities are con-
siderably in error at the higher temperatures. These new results include

the precise data of DiPippo and Kestin (12) in the range 25-300°C and
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unpubl ished Los Alamos data due to Guevara, Mcinteer, and Wageman (13) in
the range 1100-2100°K. The solid line in figure 1 is a fit of a modified
Buckingham (exp-6) potential to the data of references (12) and (13) due to
Hanley and Childs {14); this fit reproduces the experimental data of
DiPippo and Kestin (12) within 0.4% and Guevara, Mcinteer, and Wageman (13)
within 1%

Hanley and Childs (14) also point out that heat conductivities calcu-
lated frém this same fit are in reasonable agreement with experiment,
whereas values calculated from a fit to the older viscosity data (7), (8),
(9), appear systemmatically low at the higher temperatures. To make the
same point in a slightly different fashion, equations (1) and (2) can be
combined to give a relation between heat conductivity and viscosity for

o

monatomic gases :

_5 Cv,. _ I
A= X 1=F5 @

Thus equation (8) permits us to calculate heat conductivities from vis-
cosities. |t is found that heat conductivities calculated from the newer

viscosity data of references (12) and (13) are in good agreement with

" Equations (1) and (2) are the lowest Chapman-Enskog approximations; if
higher approximations are included the numerical factors in equation (8)
are increased slightly. In the case of argon, with the exp-6 potential
of Hanley and Childs, this increase amounts to 0.06% at room temperature
and increases to C.4% at 2000°K. (Calculated from Table Vii C, pp. 1173
and 1174 of Ref. 2.)



experimental conductivities whereas values calculated from the older
literature (refs. 7-9) are somewhat low at the higher temperatures.

The reconciliation of these experimental anomalies in the transport
properties of argon can be of help in selecting transport properties of
steam. Consider, for example, the experimental viscosities of steam
measured by Bonilla, Wang and Weiner (15). This work covered a wide
temperature range, approximately 250-1450°C, but the values lie from 2.5
to 4 percent below the more recent and presumably more reliable measure-
ments of Shifrin (16) and Kestin and Richardson (17). Consequently the
data of Bonilla, Wang and Weiner were not used in setting up the skeleton
tables for viscosity established by the Sixth International Conference on
the Properties of Steam (18).

The data of Bonilla et. al. are not absolute; rather the apparatus
was calibrated with nitrogen assuming the nitrogen viscosities of Vasilesco
(9). Fortunately Bonilla and coworkers (15) also measured the viscosity
of argon in the same temperature range; so we can use their argon data to
correct their steam data on the basis of the (exp-6) potential fit to

recent argon viscosities (12), (13). Thus

YLAr, exp—G (9)

rZAY3 Véi:lﬁ

The corrected viscosities shown in figure 2 are in good agreement with the

qz H.O, cowa.it.d =7HZO)H£ 5

results of Shifrin (16), Latto (19) and the skeleton tables to 700°C. At

higher temperatures the corrected viscosities lie above the data of Shifrin
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and Latto; the discrepancy amounts to 3.4% at 1100°C. Thus the corrected
viscosities of Bonilla et. al. are now in substantial agreement with the
more recent literature.

Because we have a rigorous theory for monatomic gases we can compute
heat conductivities from experimental viscosities (equation (8)); and
because it is usually easier to measure viscosity with good precision and
accuracy such computed heat conductivities for argon are probably better
than experimental values. These computed conductivities can help in
selecting heat conductivities for steam. For example, Geier and Shafer
(20) have measured heat conductivities of steam, nitrogen, and a number of
other gases in the range 100-1000°C. Their steam data at the higher temper-
atures lie almost ten percent below the smoothed results of Vargaftik and
Zimina (21), which are the basis of low pressure skeleton tables for the
thermal conductivity of steam (18). Unfortunately Geier and Schafer did
not measure heat conductivities for argon, so it is not possible to correct
their conductivities directly. However, Vargaftik and Zimina (22) have
measured heat conductivities of argon in the range 0-1000°C and their
results are in good agreement with predictions from the (exp-6) potential
fit to the recent viscosity data (14). Vargaftik and Zimina (23) have also
measured heat conductivities of nitrogen, so it is possible to correct the

Geier and Schafer data indirectly as follows:

9‘”:.,‘/3 Nac, exp=-6 (10)
Mes A AN Z

Q\ H.,! o, Cov'u,:t--cl )u,_o Gs .



in this equation subscripts GS refer to the Geier and Schafer data (20)
while subscripts VZ refer to the Vargaftik and Zimina results (22) and
(23).

Heat conductivities corrected by means of equation (10) are shown as
half-filled circles in figure 3. Also shown are the uncorrected values
(unfilled circles), and the high temperature values of Vargaftik and
Zimina (21) (squares). At high temperatures this correction halves the
discrepancy between the Geier and Schafer (20) and Vargaftik and Zimina
(21) results.

Vargaftik and Zimina (21) point out that Geier and Schafer (20)

did not apply a temperature jump correction to their steam data. To
calculate this correction one needs to know the geometry and dimensions of
the apparatus, the gas pressure, and the accommodation coefficients of the
surfaces. An elementary theory of this phenomenon is given by Kennard (24).
The correction takes the form

’>\corrected = A measured (1 +,B), (1)

For a concentric cylinder geometry,

%3 - - o (:Lﬂ*‘#ﬂ ElfT’}kz ;\ (12)
vl (r/v,) (C—R)P

where a is the accommodation coefficient of the inner cylinder, g and ry
are the radii of the inner and outer cylinders, Cp is the molar heat capacity
at constant pressure, R is the molar gas constant, P is the pressure, and
M is the molecular weight. We can calculate lower limit values offg for

Geier and Schafer's data by assuming a = | and P~20 mm Hg, the vapor
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pressure of water at room temperaturé*.

Heat conductivities of steam corrected for temperature jump using
equations (11) and (12) are shown as filled circles in figure 3. The
corrected data lie somewhat above the skeleton tables and the results of
Vargaftik and Zamina (21) (the average deviation is +2.6%).

Thus we see that the fact that we have a rigorous theory for the
transport properties of monatomic gases can be helpful in selecting and
evaluating data on polyatomic gases including steam. Experimentalists
should be urged to include measurements on the noble gases, especially
helium and argon. in this way their data can be reevaluated in the future
when the intermolecular potentials for the noble gases are known with
greater accuracy. It seems most likely that we will first get such infor-
mation for the noble gases, both from experiment and more sophisticated
quantum mechanical calculations. It will be a long time before detailed
information is available on polyatomic gases (with the possible exception

of H2)°

Polyatomic Gases

When we come to consider polyatomic gases we recall that the Chapman-
Enskog theory assumes molecules interact according to a central force law

and that all collisions are elastic. If we wish to extend or approximate

Geier and Schafer (20) give their wire diameter as 0.1 mm = 2r, but do not
report the diameter of the outer cylinder. A later paper describing a
similar apparatus gives 2ry = 16 mm (25). The exact value is not crucial,
since r, appears only logarithmically in equation (12).
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the theory for polyatomic gases we must consider the effects of orientation-
dependent forces and inelastic collisions.

Orientation-dependent forces introduce two complications. First, they
provide a mechanism for interchange of rotational and translational energy;
in other words they introduce inelastic collisions. Secondly, the orienta-
tion-dependent forces complicate the molecular collision trajectories so
that the numerical integrations necessary for obtaining the collision
integrals are almost impossibly difficult.

Monchick and Mason (26), in a paper dealing with transport properties
of polar gases, circumvented these two complications by introducing two
assumptions which they justified on physical grounds.

First they assumed that the inelastic collisions, even though they
occur frequently, have little effect on the trajectories. They argue
that most inelastic collisions involve the transfer of only a few quanta
of rotational energy; for most molecules this is small compared to the
translational energy which is of the order of kT. Hence they assume that
inelastic collisions, on the average, have little effect on the trajectories.

Their second assumption concerns the effect of orientation~dependent
forces on the angle of deflecticnm){ (equation (5)). They argue that
although the orientation-dependent forces act along the whole trajectory,
the angie of deflection is determined primarily by the interaction in the
vicinity of the distance of closest approach. Over a small range near the
distance of closest approach the relative orientation does not change much,

so that in each collision}x is determined largely by only one relative
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orientation.

These two assumptions change the problem of orientation-dependent
forces from difficult collision dynamics to easier kinetic theory. The
kinetic theory problem corresponds to a gas in which collisions follow not
one intermolecular force law, but any one of a very large number of force
laws, one for each relative orientation. This problem has been solved (27);
the expressions for the transport coefficients are the same as for a
single interaction potential, but the cross sections or collision integrals
are averages over all possible force laws. |

The most realistic intermolecular potential which has been considered
for the transport properties of polar gases is the Stockmayer potential
)\:L = 7 Cg o 3

— =] — ~ (13)

) =) —9°(F

P> = 4e (g
where

3 =9’:‘ EQ,QDS @kCos eb— Sim 60\5_,'."'6},@5 LP] ()

and
2
J_—_J__&_ (15)

Here/—«_‘is the dipole momer\t,,ea andet> are the angles of inclination of
the dipole axes to the line joining the centers of the molecules, and HP

is the azimuthal angle between them. When there is no dipole moment
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equation (13) reduces to the familiar Lennard-Jones (12-6) potential with
an attractive well depth € and a zero energy collision diameter J, which is
a measure of the size of the molecule.

Equation (13) bas: an inverse twelfth power repulsive force to
crudely approximate the strong repulsive forces between molecules at small
separations; an inverse sixth power attractive term, a reasonable repre-
sentation of the long range attractive forces for nonpolar gases; and an
angle-dependent inverse cube power term, which represents the interaction
between point dipoles located at the centers of the molecules.

Monchick and Mason (26) have approximated collision integrals subject
to the assumptions mentioned above; they approximate g (equation (14))
throughout a collision by a constant g, presumably the value of g at the
distance of closest approach. This is equivalent to replacing equation
(13) with a multitude of spherically symmetrical potentials corresponding
to all values of 9% between -1 and +1. The collision integrals were then
evaluated and averaged over all relative orientations.

This, then, is the most sophisticated theoretical model available for
the properties of steam. Since the dipole moment of steam is well established
(1.85 Debye (28)), there are two disposable parameters available, 0" and &,
for fitting viscosity data on steam,

Results of an attempt to fit the approximate Stockmayer potential
collision integrals (26) to experimental viscosity data on steam are shown
in figure 4, where the viscosity-temperature quotient is plotted as a

function of temperature. The solid curve has been calculated for
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0= 2,934 A, €/k = 800K, and = 1,0; this is consistent with

10718 sy cm).

the experimental dipole moment of 1.85 Debye (one Debye =
The fit is rather poor; it is nearly 5% above the skeleton table at 100°C
and 6% below at 700°C. Qualitatively, the experimental viscosities in-
crease more rapidly with temperature up to about 700°C; at higher tempera-
tures the reverse is true and the experimental viscosities increase less
rapidly than theory based on the approximate Stockmayer collision integrals.
Somewhat better agreement can be obtained by treating Jpas another
disposable parameter; such a fit is shown as the dashed curve in figure &4,
calculated for ¢ = 2.525 g, €/k = 370%, and £= 2.5 (the largest
value for which the collision integrals have been calculated (26)). This
corresponds to an effective dipole moment of 2.028 Debye, nearly ten
percent in excess of experiment. Although th; fit to experiment is im-
proved it is still not good (in contrast, for example, to the excellent
fit of the exponential-6 potential to the argon data, shown in figure 1).
Further, there is no theoretical justification for allowithS: {or the
dipole moment) to be a disposable parameter.
We conclude that the approximate Stockmayer collision integrals
cannot be fit to the viscosity data of steam. Thus they are nearly
useless insofar as prediction of properties under other conditions is
concerned; they cannot be used for interpolation, let alone extrapolation.
It is not easy to pinpoint the reasons for this failure. First of all,
the Stockmayer potential is perhaps a rather poor approximation to the

force law between water molecules; the charge distribution within the
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molecule is probably not adequately represented by a point dipole. The
next logical step would be to add a dipole-quadrupole term to the force
law, as Rowlinson (30) has done to obtain improved agreement between theory
and experiment for the second virial coefficients of steam. The collision
integrals could then be approximated in the same way that the cross
sections for the Stockmayer potential have been approximated (26).

On the other hand we do not know what errors may be introduced by
Monchick and Mason's assumptions that inelastic collisions have little
effect on trajectories and that the angle of deflection in a collision is
determined by the relative orientation at the distance of closest approach.
Perhaps these assumptions could be tested by some judicious computer
studies of collision dynamics.

Let us turn now to the question of inelastic collisions. We may be
able to neglect inelastic collisions in considering viscosity and diffusion
coefficients, which depend on molecular momentum and mass; but we must
expect larger errors if we neglect such collisions in considering the
heat conductivity of polyatomic gases, since this property depends on the
transport of both translational and internal energy.

It is convenient to discuss the thermal conductivity of a polyatomic
gas in terms of its relationship to the viscosity through the dimensionless
ratio

f = )M/rLCV (16)

According to ultrasimplified kinetic theory, f = 1; however, the rigorous
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Chapman-Enskog theory for monatomic gases predicts that f should be very
nearly 5/2 (see equation (8)). This is due to the fact that translational
enerav is a function of molecular velocity; the molecules possessing the
most energy are the host rapid, have the longest mean free paths, and
hence méke an enhanced contribution to the heat tranSport°

For polyatomic gases, f is less than 5/2 and tends to be small when
the molar heat capacity is large and originates mostly from the internal
energy modes. Consequently Eucken (31) suggested that the transport of

translation and internal energy be considered separately, and proposed

fCv = firans®v, trans * Fintlint an

(c and C; are the translational and internal contributions to
vV, trans int

the total heat capacity Cv.) Eucken assumed ftrans = §5/2, by analogy

with the monatomic gases. However, because there is expected to be little
correlation between molecular velocity and internal energy, Eucken assumed
fint = |1, the result of the ultra-simple theory.

Ubbelohde (32) pointed out that molecules with excited internal
energy states may be regarded as different chemical species and that the
flow of internal energy can be considered as energy transport due to

diffusion of the excited states. This concept leads to the result
fint = /°Dintﬁ7 , so that

D.
fe = 2R+ CInEc (18)

1

which is known as the modified Eucken approximation. Here Dint is a



diffusion coefficient for internal energy; if D, . is taken to be the

int

self-diffusion coefficient then fintﬁs 1.3. To justify this modified
Eucken approximation (equation(18)) it is tacitly assumed that inelastic
collisions are rare. This is necessary in order that the translational
velocity distribution function should not be unduly perturbed, so that the
translational conductivity can be related to the viscosity as in the case
of the noble gases. On the other hand, there must be enough inelastic
collisions to maintain the internal energy states in equilibrium with

the local temperature.

in order to account for inelastic collisions in a rigorous fashion
it is necessary to reformulate the Boltzmann equation, and then carry
out the solution by an extension of the Chapman-Enskog method which allows
for inelastic processes.

Theories of this sort were first developed by Wang Chang, Uhlenbeck,
and deBoer (33), (34), and by Taxman (35). Although these formally solve
the kinetic theory problem, they cannot be used to predict transport
coefficients because the task of calculating the cross sections or
collision integrals involving inelastic collision appears hopelessly
difficult.

However Mason and Monchick (36) have succeeded in developing explicit
expressions relating the heat conductivity of a polyatomic gas to other
gas properties, starting with the purely formal theories of refs. (33),
(34). By systematically including terms involving inelastic collisions,

they derived the modified Eucken expression (equation (18)) as a first
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approximation and, as a second approximation, an expression dependent on
the relaxation times for the various internal degrees of freedom. Their

! result may be written
i

fuCy = R+ ,%intc'int
2 C
2 5 ‘l“.f_ ——
- -‘5’(3-_/%1? ) Zk (19)
T+ 2[5 +£Ds )} Ce
’V<3-R‘+"1Cm+ ZK

Here Zk is the number of collisions for relaxation of the kth internal
mode while Cy is the heat capacity associated with that mode. The

coliision number is related to the relaxation time'tl:

Ty s PG
—_— = e 20
1rcoll - (20)

"L

where'tzo|| = Cﬂyh)(Q/P) is the mean time between collisions.

Zk=

The first two terms in equation {19) are simply the modified Eucken
approximation while the third term is important only for modes involving
small collision numbers. In small, rigid polyatomic molecules these are
associated with rotational relaxation. For example, in the case of
steam, for rotation Zrog\J 4 whereas for vibration Z,;,~ 70-80 (37),
(38). (In large flexible molecules vibrational relaxation times may
also be small.)

In Mason and Monchick's expression (equation (19)) the difficult

integrals of the formal theory are disguised in the Z; and in Dint’ the

diffusion coefficient for internal energy. The theoretical expression for

Z is complicated, as might be expected, and has only been evaluated for
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very simplified and unrealistic models such as spherocylinders and rough
and loaded spheres (39), (40). Fortunately the collision numbers can be
obtained experimentally from acoustical studies or shock tube measurements.

The situation with respect to the diffusion coefficient for internal
energy is less fortunate. Again it can be calculated only for simplified
and unrealistic molecular models, but in this case there does not seem to
be any experimental method independent of the heat conductivity itself.

For lack of a better procedure, D is commonly assumed equal to the self

int
diffusion coefficient for nonpolar gases.

However, the thermal conductivities of highly polar gases, including
hydrogen fluoride, steam, and ammonia appear to be anonmalously low in
relation to their viscosities. Mason and Monchick (36) suggest that this
effect is largely due to a resonant exchange of rotationed energy, pre-
sumed probably on grazing self-collisions of polar molecules. Hence, a
grazing collision with exchange is equivalent to a head-on collision with-
out exchange, insofar as the transport of the rotational quantum is con-
cerned. Thus the diffusion coefficient for internal energy, Djn¢s IS
smaller than the self-diffusion coefficient, D, and is given by the
expression

Dine = 0/7(1 +A) (21)
where A is a correction term calculated from the theory of resonant
collisions. Mason and Monchick (36) give expressions for A for linear
dipoles and also for several types of symmetric tops.

This theory has had success in rationalizing experimental data on a

number of nonpolar gases (36), (41); in the case of polar gases it seems
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to do a good job of describing the changes due to isotopic substitution of
deuterium for hydrogen (hZ)-(hh)*. Consequently it may be worthwhile to
see if the theory can successfully predict heat conductivities of steam
from experimental viscosities. Inasmuch as Zvib is 70-80 for steam we
can neglect it and consider only rotational relaxation. Equation (19) is

then rewritten to calculate conductivity,

2
3 (5 _fpint)
. 2
AHzO = %& __]L_?_ + PDintE_'.ﬂg - TTZ%EE 1 . (22)

R (}g +-F¥%U1E

1 +

TZrot

The dimensionless group f’Dint/qz can be calculated from an equation ob-

tained by combining equations (1), (3), and (21)

*
oo _ Lo @D
;z“” = 1+ A :

(2 2)?‘( (‘ l)‘)'\’
The ratio of collision integralsdﬁ, /1 Vil is a slowly varying

(23)

function of temperature whose exact value depends on the intermolecular
force law. However, for most realistic potentials this ratio is close to

1.1, so we can use values based on the Stockmayer potential with some

* References (36) and (41)~(L44) actually used an approximation to
equation (19) obtained by taking the denominator of the third term
in equation (19) to be unity.
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confidence. (For this potential the ratio varies between 1.074 at 100°¢C
and 1.108 at 1000°C.)

As was already mentioned, Mason and Monchick (36) developed expressions
for the resonant corrections,l&, for linear dipoles and symmetric tops.
They suggest that slightly asymmetric tops can be treated in the following
manner. If 1, is the moment of inertia about the dipole axis (in the case
of water, the figure axis of the molecule) and Ig, Ic are the other two
moments, one uses the symmetric top formulas replacing lg by (IBIC)%. In
point of fact, the water molecule is a highly asymmetric top (IB and ¢
differ by a factor of three). In the absence of any better procedure we
will assume that water can be treated as a slightly asymmetric top and
find that it must then be classed as a near-spherical top. For such

molecules,
\*  (2,2)% C ( ]:gjki _7th
A=w%<a«f>(%, /fr%@?m for L@ ¥ L. J @

Here <ah> is the mean value of a dimensionless quantity involving the
rotational quantum numbers, taken to be O0.44 and h is Planck's constant.

Heat conductivities for steam calculated from equations (22)-(24) are
compared with experiment in fig. 5. The calculations (carried out at 1009,
300°, 500°, 700° and 1000°C) are based on skeleton table viscosities to
700°C (18) and Latto's value at 1000°C (19). The collision number for
rotational relaxation was taken to be four (37), (38).

Although the agreement between theory and experiment is good at 100°c,
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predicted heat conductivities are uniformly about 13% too high at tempera-
tures above 300°C. |f Mason and Monchick's (36) expression for the heat
conductivity is correct, the difficulty must lie in our inability to pro-
perly predict Dint rather than Z 5., because even if it is assumed that
both Z, .. and Zyjp are zero, the predicted conductivity at 1000°C is
still 3-5% too large.

Thus the theory of Mason and Monchick (36) cannot at this time be
used for predicting heat conductivities for steam, nor can the theory
help us in selecting among discordant experimental data. This theory may
become useful in the future if reliable experimental or theoretical
methods are developed for determining the diffusion coefficient for

internal energy D and also (to a lesser extent) high temperature

int
relaxation times.

To summarize briefly regarding the dilute gas: the theory for mona-
tomic gases is in good shape and can be helpful in selecting and correcting
experimental viscosities and heat conductivities of steam; available
theories for polyatomic gases do not correlate steam data at all well.
Theoretical prediction of viscosity may become feasible when the intermo-
lecular potential for steam is known in greater detail and the appropriate
collision integrals are evaluated numerically. Theoretical prediction of

heat conductivity may be possible when methods are developed for obtaining

relaxation times and diffusion coefficients for internal energy.
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THE DISSOCIATING GAS

If the temperature is raised sufficiently, polyatomic molecules
dissociate into simpler fragments. As an example, the equilibrium com-
position of steam at atmospheric pressure is shown as a function of
temperature in figure 6 (45). At about 2100°-2300°K water starts to
dissociate and the diatomic molecules Hy, OH, and 0, appear. The con-
centrations of these species maximize at 3400°-3500°K where they comprise
almost forty percent of the gas mixture; at higher temperatures they too
dissociate. Hydrogen and oxygen atoms appear in the range 2600°-2800°K
and increase; they account for more than ninety percent of the mixture at
4500°K.

The transport properties of a dissociating gas can be treated in
terms of dilute gas theory; however two new features appear. First of
all, we are dealing with a mixture of gases rather than a single chemical
species. Secondly, the presence of mobile chemical equilibria can lead to
a large increase in the thermal conductivity.

Theories for the transport properties of gas mixtures are about as
well-developed as theory for pure gases. Thus the Chapman-Enskog method
has been developed for the viscosity (46) and thermal conductivity (47)
of multicomponent monatomic gas mixtures., Hirschfelder (48), (49) has
derived an expression for the heat conductivity of polyatomic gas mixtures
which is equivalent to the modified Eucken approximation for pure gases,
while Monchick, Pereira, and Mason (50) have obtained an expression for
polyatomic gas mixtures analogous to the Monchick-Mason theory (36) for

pure gases.
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These expressions for gas mixtures are algebraicly much more complex
than corresponding expressions for pure gases, but if a computer is avail-
able this is mereiy a matter of buokkeeping. !n addition, the exnressions
involve cross sections characteristic of all pairwise interactions in the
gas mixture. In a mixture of ¥ components there are V (¥+1)/2 interactions,
so a great deal of information about the various intermolecular force laws
is required.

Svehla (45) has calculated the transport properties of steam in the
range 600°-5000°K.,‘The calculations are not based on any single inter-
molecular force law, but rather a variety of potentials more or less
appropriate to the various interactions. Calculated viscosities are
shown in figure 7; also shown are the skeleton table values and the highest
temperature data of references (15) (corrected) and (19). Svehla used
Stockmayer potential force constants for the H,0-H,0 interaction which
were fit to the uncorrected data of reference (15) and for that reason
his computed viscosities lie below the experimental values. Note that
above 3000%K the viscosity becomes pressure-dependent because the gas
composition changes considerably with pressure. (At low pressures the
viscosity of a pure gas is independent of pressure, see equation (1).)

Let us turn now, to the second and more dramatic phenomenon in
dissociating gases. In dissociating gases heat transport may be much
larger than in '"frozen' (nonreacting) mixtures. Large amounts of heat
can be carried as chemical enthalpy of molecules that diffuse because the

gas composition varies with temperature. For example, in a gas that




26
absorbs heat by dissociating as the temperature is raised heat is trans-
ported when a molecule dissociates in the high-temperature region and the
fragments diffuse toward the cooler region. In the low-temperature region
the fragments recombine and release the heat absorbed at high temperature.

When the chemical reaction rates are very high, chemical equilibrium
can be assumed to exist locally throughout a gas mixture. |t is then
possible, by differentiating the equilibrium relations, to relate the con-
centration gradients to the temperature gradient. In this event one can
define an equilibrium thermal conductivity:Xe independent of apparatus
geometry and scale:

9‘e = ’)f + A, (25)
where'kf is the conductivity in the absence of reaction (the ''frozen'
thermal conductivity) and Qw is the augmentation due to the reactions.

A general expression for the thermal conductivity due to chemical re-
actions has been developed (51), (52) that is applicable to mixtures in-
volving any number of reactants, inert diluents, and chemical equilibria,
provided chemical equilibrium exists locally in the temperature gradient.
For a simple dissociation of the type A@ nB the thermal conductivity due
to chemical reaction is

_ DagP AW *a%g
;\r - RT  RT* (nx, + x

XA (26)
B

Here Dpg is the binary diffusion coefficient between components A and B,
AH is the heat of reaction, and Xp, Xg are the mole fractions of the com-

ponents. Note that unless both species are present,?\r is zero. Further-
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more, since in a dissociating gas the composition varies with pressure,
we expect the heat conductivity to vary with pressure also. This is in
contrast to the behavior of nonreacting gases, for which the heat con-
ductivity is independent of pressure.

Experimental (53) and theoretical (54) conductivities for the
N‘,,_Ol_”~_'> 2NO, system at one atmosphere are shown in figure 8. The dashed
curve indicates the frozen conductivity. Thuslkr.is the major contribu-
tion to the heat conductivity; at the maximum (where the mass fractions of
N20y and NO, are equal) the conductivity is comparable to that of a light
gas such as helium, and an order of magnitude greater than in the chemically
frozen gas mixture,

The theoretical expression for a system involving two reactions has
been tested (55) for the case of hydrogen fluoride vapor. At moderate
pressures the PVT behavior of hydrogen fluoride can be described in terms
of a monomer-hexamer equilibrium, while low pressure data suggest a dimer
as well, Although the actual state of the vapor is uncertain, it appears
that at low and moderate pressures the equilibria

2HF = (HF), AHy = 7.h4 keal

6HF = (HF) AHe

40,5 kecal
serve to specify the system rather well.

Computed and experimental (56) thermal conductivities are compared
in fig. 8. The solid line was computed assuming both dimer and hexamer
equilibria, whereas the dashed line was computed considering only the

hexamer equilibrium. Note the extreme pressure dependence of the thermal
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conductivity. The maximum conductivity is more than three times that of
hydrogen at the same temperature and some 33 times the frozen thermal
conductivity expected in the absence of reaction. The inclusion of a dimer
equilibrium markedly improves the agreement between theory and experiment
in the low-pressure region.

The experimental studies on nitrogen tetroxide and hydrogen fluoride
prove the validity of the theoretical expressions for thermal conductivity
of reacting gases in chemical equilibrium. The theory has also been
successfully applied to data for the PC!5 F=5 PCl3 + Cly equilibrium.

Svehla (45) has calculated the thermal conductivity of equilibrium
steam at temperatures from 600° to 5000°K. His results at 0.1 and 10
atmospheres are shown in figure 10; this system involves four simultaneous
equilibria. The solid curves arevthe equilibrium conductivities; in
the regions of the maxima they are an order of magnitude larger than the
frozen conductivities (dashed curves).

Since Svehla's calculations of viscosity and heat conductivity use
dilute gas theory which show deviations from experiment of ten percent or
more at lower temperatures (figures L4 and 5) we may expect comparable
or larger errors in the high temperature regime, perhaps on the order of
twenty percent. These calculations may be useful nonetheless, as it is
likely to be some time before experimental data of this accuracy are
available for temperatures much in excess of 2000°K.

The theory we have considered thus far assumes that chemical reactions
are so rapid that chemical equilibrium prevails locally at all points in

the gus mixture. |If rates are slower, heat conduction decreases and
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approaches the frozen value as the rates approach zero. A genera! expres-
sion has been derived (57) for the apparent thermal conductivity of
reacting mixtures in which a single reaction proceeds at a finite rate.
in contrast to systems in which reaction rates are either very high or
very low, it is found that heat conduction depends on the geometry and
scale of the system, as well as the catalytic activity of the surfaées and

the gas phase reaction rate,

THE MODERATELY DENSE GAS

As we have already discussed, the theory for the transport properties
of dilute monatomic gases is based on the Chapman-Enskog solution of the
Boltzmann equation. If the intermolecular potential is known, the trans-
port coefficients can be obtained in terms of binary collision integrals
(equations (5)-(7)).

in the case of the moderately dense gas modern statistical mechanical
theory tries to account, in turn, for the effects of binary collisions,
then triple collisions, then quadruple collisions, etc. Such an approach
was initiated by Bogoliubov (58).

It is well known that the equation of state of a gas can be represented

by the virial expansion:

PV . 2,
ﬁ = ‘ -+ Bla+ Cﬁ ¥ R (27)

In this series the second term arises from interactions between pairs of

moiecules, the third from interactions between clusters of three molecules,
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etc. Until recently it was generally believed that the transport proper-

ties could also be expanded in a power series in density

M ’[0\'_1 o P C’lfz P (28)
A )o{-_' toBp C,\[oz Foeneend] (29)

because such an expansion was Implicit in the theory of Bogoliubov. (Here

[}

Tlo andA0 are the low density values.)

However, detailed examination of the quadruple collision integrals
which determine the coefficients CQ and Ca indicates that they become
infinite as the density approaches zero. These divergent coefficients
were predicted by estimating the probability of the relevant collision
events (59)-(62); they were later confirmed by explicitly evaluating
corresponding terms for the transport coefficients of a two-dimensional
gas of rigid disks (63)-(65). (For the two-dimensional gas the divergence
occurs in the BQ and By terms.) It is found that the leading term in Cz
and C, is proportional to the logarithm of the mean free path. As the
density approaches zero, the mean free path tends toward infinity; this
is the source of the divergence in C% and C). Since at low density the
mean free path is inversely proportional to the density it was suggested
that CW and C, be replaced by qunﬁ + D? and Czlnf>+ Dy (60) - (64) .
Consequently, equations (28) and (29) are replaced by

'\l = 'rlo[l - B')(o + Cq/szln{o - D_,rlz + ] (30)

and

3\ ‘}OD + B;{o + C;r‘.\zln(O+ D)FZ + ] (31)

This conjecture has been supported by further theoretical studies (61),
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(62) and (66). The nature of the succeeding terms in equations (30) and
(31) is not known; it has been proposed that they include products of
powers ofr: and inf>(60), (67).

A recent analysis by Hanley, McCarty, and Sengers (68) suggests
that equations (30) and (31) may be a better representation of experimental
data than equations (28) and (29). Their procedure, discussed in defail
for the case of heat conductivity data of neon (69), is as follows:
first they fit the data to a linear equation, corresponding to the first
two terms of equation (29) or (31),

A= AL+ ool (32)
They start by obtaining a least squares fit of six to eight data points
in the density range up to 40 Amagat*. They then consider successively
larger numbers of data points, ultimately to a density of 120 Amagat, and
observe that the coefficientsj}o and Ba do not change significantly nor
does the standard deviation of the least squares fit change. They conclude
that equation (32) is consistent with the experimental data up to 120
Amagat.

Above 120 Amagat deviations from equation (32) occur; the standard
deviation increases and the coefficients;Xo and BA begin to drift. At
this point a quadratic term is added

A= AL+ e caf,2]. (33)

Equation (33) is then fit to the data, starting with about 15 points in

K)

" The density in Amagat is the ratio of the actual density to the
density at 0°C and 1 atmosphere.
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the density range 0-200 Amagat. The density range is again increased, up
to 440 Amagat, with no significant changes in the coefficients Ag, By
and C,. However, the coefficient B) is 8-17% smaller than the value ob-
tained in the linear range to 120 Amagat. This indicates that equation
(33) is not consistent with the experimental data.

Next they consider the cubic equation,

A = ?‘o[““’ Bz’o + C,\]oz + 07?03], (34)
and repeat the procedure, starting with the range 0-560 Amagat and extend-
ing it to 800 Amagat. Again the important result is that BA is smaller
than the fit in the linear range, so that equation (34) is not consistent
with the data.

These results are suggestive, but do not prove that equation (29) is
incorrect; it is possible that in the density interval to 800 Amagat the
data should be fit to a higher order polynomial. (However if a higher
order polynomial is required it is not possible to obtain meaningful values
of any of the coefficients from the experimental data.)

Finally, Hanley, McCarty, and Sengers (68) consider the equation

A= 7\0[] + B0+ Cl,"zlnf’ + D’PZJ (35)
obtained by truncating equation (31). Equation (35) is fit to the data,
starting in the range 0-240 Amagat. The density range can be extended to
720 Amagat without significant changes in the coefficients or increase in
standard deviation. In contrast to the polynomial fits (equations (33)
and (34)), B is the same as the value obtained in the linear range to

120 Amagat, within the standard deviation. Thus equation (35) is consistent




33

with the experimental data. Hanley, McCarty, and Sengers (68) conclude
that their analysis yields meaningful values for the first density coeffi~
cient B?V They have applied this sort of analysis to viscosity and theimal
conductivity data on a number of other gases.

These results would seem to have bearing on the problem of correlating
the properties of steam; Weinstock (61) indicates that the considerations
leading to equations (30) and (31) are not limited to molecules with
central force laws. Hence these results should also apply to highly polar
gaSes such as steam. Experimental thermal conductivity data should be
correlated using equation (35) and viscosity data using the analogous
expression

7] = 70[1 + B,,)P+ c,qozlnl: + DWOZJ.' | | (36)
If more elaborate equations are required further empirical! terms can be
added.

Let us turn now to the question of the theoretical prediction of
the coefficients Bq and BA which requires the evaluation of triple
collision integrals. Thus far these triple collision integrals have
evaluated only for a gas of rigid elastic spheres (70). However there have
been several attempts to develop expressions for B" and 52 by introducing
various approximations. The first such theory was that of Enskog for a
dense gas of rigid elastic spheres (71). Enskog's values for the triple
collision contribution to first density corrections agree with Senger's
calculations to within five percent although there is at least the suggestion

that this may be fortuitous.
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Hoffman and Curtiss have generalized the Enskog approach to include
the effect of soft potentials (72), (73) and have evaluated the first
density corrections for the Lennard-Jones (12-6) potential (74). This
potential has an attractive well which leads to both bound and unbound
two-particle trajectories. Their calculations do not consider the bound
states, so that their results can be meaningful only at high temperatures
where bound states are not important.

At high temperatures their predictions are in reasonable accord with
experimental data for the noble gases. In particular, they find that 87
is negative whereas BA is positive in the high temperature limit, At
low temperatures their results do not agree with experiment, presumably
due to neglect of bound states.

Because Enskog's approximation of the triple collision contribution
is in reasonable accord with Sengers results (70) there is at least the
hope that the Hoffman and Curtiss (74) calculations are good approximations
to what might be obtained by a truly rigorous approach.

Another approach for approximating B" and %ﬂ is more promising for
use at low temperatures; the initial pressure dependence is assumed to
arise from molecular association, and in particular, a mixture of monomers
and dimers. The first treatment of this kind was due to Storgryn and
Hirschfelder (75), and more recently.ﬁim and Ross have carried out a
similar analysis for viscosity (76), and, with Flynn, for thermal conducti-
vity (77). The treatments of reference (75) and refs. (76), (77) differ

principally in the way the equilibrium constant for the monomer-dimer
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equilibrium is obtained. Hirschfelder and Storgryn (75) consider bound
states and metastable dimer states while Kim and Ross (76) also consider
quasidimers; these are pairs of moiecuies in orbiting coilisions. {They
show that the lifetimes of such pairs is large compared to collision times.)
Thus triple collisions in both theories are replaced by binary collision
between monomers and dimers.

Both theories assume a Lennard-Jones (12-6) potential and it turns out
that the computed values of Bn and BA are sensitive to the force law
assumed for the monomer-dimer interaction; consequently the force constant
for this interaction was adjusted to obtain good agreement with experiment.
Hence these theories may be helpful in predicting the density behavior for
molecules obeying a Lennard-Jones potential, but they cannot make predic-
tions for molecules obeying very different force laws in the complete
absence of experimental data.

Are any of these theories helpful in predicting and correlating the
properties of steam? The theory of Hoffman and Curtiss (74) might be
helpful at high temperature, provided the intermolecular potential for
steam can be approximated by a Lennard-Jones (12-6) potential. However, we
have already seen that the more sophisticated Stockmayer potential does not
do a good job of correlating the high temperature,low density viscosity of
steam ~see figure 4. In view of this failure it would seem fortuitous if
the results of Hoffman and Curtiss (74) turn out to be applicable to steam.

Barua and Das Gupta (78) have applied the Storgryn-Hirschfelder type

of analysis to the viscosity of steam. They seem to be able to rationalize
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the experimental observation of Kestin and Richardson (17) that below about
315°9C the viscosity of steam decreases with increasing pressure. Das Gupta
and Barua (79) have considered the analogous problem of the thermal con-
ductivity of steam. In this case there are inconsistencies amongst
experimental data on the density dependence of the heat conductivity, so a
meaningful comparison with experiment is not possible.

To sum up, theories for predicting the coefficients B1 and B) are not
developed to the point where they can be applied to steam. |t seems
reasonable that the Kim-Ross type of analysis (76), (77) can be used to
obtain a qualitative understanding and rationalization of trends observed

experimentally.

THE CRITICAL REGION
The critical region is a region where many properties show anomalous:
behavior. For example, the isothermal compressibility and the coefficient
of thermal expansion become infinite at the critical point. The specific

heat at constant pressure C_ is related to the compressibility so it

p

diverges also. The compressibility and C_ diverge approximately as

p
|T-Tc|““/3 (80). Even the specific heat at constant volume is weakly
divergent. In view of these anomalies in the equilibrium properties we
should be alert to the possibility of analogous behavior in the transport
coefficients.

Let us first consider the viscosity. Naldrett and Maass (8]) were

the first to investigate the viscosity of carbon dioxide in the critical
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region in detail. (Carbon dioxide is a favorite subject of study because
of its convenient critical temperature of 31.0°C.) When their data at
31.1°C are piotted as a function of density there annears to be a small
anomalous increase in the viscosity near the critical density - see figure
11. Naldrett and Maass (81) used an os¢illating disc viscometer. On the
other hand, Michels, Botzen and Schuurman (82) using a capillary viscometer
found a much larger anomaly, a factor of 2 at 31.1°C (not shown in figure

11). The capillary method is not suited to the critical region; because

of the large compressibility there is a large density gradient in the

capillary. To resolve the discrepancies between references (81) and (82)

Kestin, Whitelaw, and Zien (83) reinvestigated using an oscillating disc
instrument. Their data (figure 11) indicate that any anomalous increase
in viscosity is much smaller than reported by Michels and coworkers. At
31.1 they found an anomalous increase of about the same amount as reported
by Naldrett and Maass. At 34.100, only one percent above the absolute
critical temperature, the anomaly has completely vanished - see the dashed
curve in figure 11.

The significance of these small experimental anomalies in viscosity is
not clear at this time (84). The effect may be merely a consequence of
experimental difficulties near the critical point. On the other hand a
recent theoretical study by Kadanoff and Swift (85) suggests that the
viscosity at the critical point is either weakly divergent or strongly
cusped.

We turn now to the heat conductivity. There has been controversy in
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the past as to the presence or absence of an anomalous increase in the
thermal conductivity in the critical region (84), (86). However, it now
seems definite that there is an anomaly and that the heat conductivity
diverges approximately as ‘T-Tc|-2/3.

The first detailed survey of the critical region for carbon dioxide
was due to Guildner (87), (88). He used a concentric cylinder apparatus
and was not able to avoid heat transport due to natural convection. How-
ever, by making measurements with various temperature differences and
extrapolating to AT = 0 he concluded that there is a pronounced anomaly
in the thermal conductivity. This conclusion was confirmed by the pains-
taking work of Michels, Sengers, and van der Gulik (89)-(91) who used a
parallel plate apparatus and thus avoided problems due to natural convec-
tion. These measurements are the most extensive and convincing direct
demonstration of the heat conductivity anomaly. However, the effect has
since been observed for other gases including ammonia (92), (93), sulfur
hexafluoride (94), methane (95) and argon (96).

The data of Michels, Sengers, and van der Gulik are shown in figure
12, as plots of thermal conductivity against density for several isotherms.
The maximum at 31.2°C and critical density is about six times as large as
would be predicted from the smooth dashed curve connecting low and high
density data. This temperature is less than 0.29C above the critical
point. As the temperature is raised the anomaly decreases rapidily. At
32.1°C, the heat conductivity is only about 40% as large as at 31.2° and

when the temperature is raised to 75°C the anomaly is barely perceptible.
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The anomaly occurs over a narrow range of pressures. For example, at
31.2° the density doubles from 0.3 to 0.6 gm/cm3 when the pressure is
raised aboui tiirée percent from 71.5 to 73.9 atmospheres. Thus the heat
conductivity anomaly may be missed entirely unless measurements are made at
pressures corresponding very closely to critical density.

Very recently the thermal conductivity anomaly has been verified by
an entirely different experimental technique, namely laser light scatter-
ing. An abbreviated discussion of this subject has been presented by
Sengers and Levelt Sengers (97) and a more exhaustive review is given by
Mcintyre and Sengers (98). Very briefly, the spectrum of light scattered
by fluids consists of a central Rayleigh line at the wave length of the
light source and two symmetrically displaced Brillouin lines. The scatter-
ing is caused by fluctuations in the fluid. The Brillouin lines are due
to fluctuations in pressure at constant entropy, that is sound waves.
Sound waves propagate at the sound speed which leads to the Doppler dis-
placement of the Brillouin lines from the source frequency. The width
of the Brillouin lines is a measure of the sound attenuation. The central
Rayleigh line is due to fluctuations of entropy at constant pressure. These
do not propagate but decay by heat conduction. Consequently the width of
the Rayleigh line is proportional to the thermal diffusivity;’)?ocp.
Finally, the ratio of the intensity of the Rayleigh lines to the sum of
the intensities of the Brillouin lines is (CP/CV)-I. in the critical region
C, diverges much faster than C,, so that most of the intensity of the

P
scattered light goes into the Rayleigh line.
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Thus if one can measure the width of the Rayleigh line and knows the
behavior of Cp. one has another method of determining thermal conductivity.
This method does not require imposition of macroscopic temperature gra-
dients so that there are no distrubances due to natural convection and
the critical point can be approached as closely as desired.

However, until very recently it has not been possible to measure
Rayleigh line width in the critical region since the line widths are far
too narrow to be measured by conventional spectroscopic methods. With the
advent of the laser, however, new high resolution spectroscopic techniques
are possible so that the scattered spectrum can be measured with remarkable
accuracy.

The first measurements of Rayleigh line width near the critical point
were those of Ford and Benedek (99), (100) on sul;ur hexafluoride. Swinney
and Cummins (101) have measured the thermal diffusivities of carbon dioxide
along the critical isochore from 0.02 to 5.3°C above the critical tempera-
ture and also along the gas and liquid sides of the coexistence curve.
Their results on the critical isochore are shown in figure 13 along with
the data of Seigel and Wilcox (102), obtained by the same technique. The
open squares are thermal diffusivities calculated from experimental heat
conductivities combined with equation of state data (103). The slope of
the line is 0.73 so that the thermal diffusivity is proportional to ‘T-TC|O.73.
Along the liquid side of the coexistence line Swinney and Cummins find the
thermal diffusivity proportional to ’T-Tc|0'72 and along the gas side it

|0.66

varies at |T-TC
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Osmundson and White (104) have also measured Rayleigh line widths in
carbon dioxide and report that at constant density they are proportional to

and
0.64
find along the coexistence curve the line width proportional to |T-Tc' .

LY A
‘T‘Tcl ’?. saxman and Benedek (105) have studied suifur hexafiuoride

But along the critical isochore above the critical point they find line
width proportional to |T-Tc|]‘27° This last result is in disagreement with
all the data on carbon dioxide and merits further investigation.

Thus the indication is that in the critical region the thermal diffusi~-
vity tends toward zero approximately as |T-Tc|2/3. Since Cp diverges as
|T-Tc|-h/3, this implies that the thermal conductivity must also tend

-2/3.

toward infinity and be proportional to IT-TC| This is in accord with
the recent theoretical investigation of Kadanoff and Swift (85) which in-

dicates that the thermal conductivity whould diverge in this same fashion

on the critical isochore and the coexistence curve.

Thus it seems well-established that the heat conductivity does indeed
have a pronounced anomaly in the critical régiona it has been suggested
(90), (91) that this may be due to the presence of large clusters of mole-
cules in the gas. In the presence of a temperature gradient these clusters
tend to form in the cool regions and diffuse to the warm regions where they
break up and absorb heat in the process. This is quite analogous to the
situation in the dissociating gas which we have already discussed. Indeed,
we can apply the theory of heat conduction in a chemically reacting to

predict heat conductivities of the right order of magnitude, and by an ad

hoc adjustment the theory can be made nearly quantitative.
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We begin by imagining that the heat conductivity consists of two parts

ix = :kf + :kr- (37)
Here :kr represents the contribution due to diffusion and dissociation of
clusters whereas ;\f represents the rest of the heat conductivity—the dashed
curve in figure 12.

Of course there must be a whole spectrum of cluster sizes. However,
for simplicity we will assume that the gas can be approximated as con-
sisting of a monomef and a'single large cluster of n moromer units. In
other words, we assume a single reaction

Xy &= Xq- (38)
We will relate the thermal conductivity to other experimental quantities
such as the specific heat and the compressibility. In this way we can hope
that some of the crude aspects of the model will be ameliorated.

For a gas with a single dissociation we have already seen that

2
9\ = Dlnp AH X]Xn (39)
r RT RT2 (x; + nxn)2
(see equation (26)). Here x} and x, are the mole fractions of the monomers
and clusters while Dy, is the binary diffusion coefficient between monomers
and clusters.

The specific heat of such a reacting gas is also augmented by an

amount (5)
1 p AWl X | X
c, = = — 170 . (40)
P P RT RT (x; + nx)?

By combining equations (39) and (40) we find
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A, ={oD'nCpr. (41)

Equation (41) is also correct for a system involving multiple equilibria
provided all the binary diffusion coefficients between the various mole-
cular species are numerically equal. (This follows by inspection of the
theoretical expressions for Cpr (106) and A, (52).)

Let us now rewrite equation (41) as

Dyn\ |
Q\r = PD(_D—) < (42)

r
where D is the self diffusion coefficient. Experiment indicates that there
is no anomaly in D in the critical region. Thus Trappeniers and Oosting
(107) find that the self diffusion coefficient of methane in the critical
region is within 5% of the low density value, and DePaz (108) has ob-

tained a similar result for argon. Hence we will take D as the low density
value, givén by Chapman-Enskog Theory, equation 3. From the Chapman-Enskog

expressions for the binary and self diffusion coefficients we obtain

Din _0'12[2.1(]’])*. _\/1 1
R ORI 2+ 1) (43)

]l*
Here(f}ﬁ]l( 1) is the diffusion cross section for the monomer-monomer

: . . 29 (1,1, . :
interaction whlleG-lnlﬂqn( 1) is the corresponding cross section for the
monomer-cluster interaction.

We can make a crude estimate of the ratio of cross sections as follows:

*
1,1
If we assume the molecules behave as rigid spheres thendLl( ) and
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L(L‘n(]’])w are by definition unity. We also would expect that the volume
of the cluster should be proportional to the number of particles it con-
tains,
3
E;é; = bn (44)
]
whereﬁj\is the diameter of the cluster and b is a factor related to the
geometry and density of the cluster. For example, if the cluster is
spherical and the density corresponding to a closest packing of spheres,
(coordination number 12) 74.05% of the volume is occupied and b = 0,7405™ ' =
1.35. On the other hand, if the cluster is still spherical, but has the

more open structure of a diamond lattice (coordination number 4) b = 3.

Assuming the usual combination rule,( |, = %(GT +07),

2 1
Dyn [ 2 1 1 I
o2 + L\, 5

Thus we can predict the thermal conductivity anomaly from equations (42),

(45) and the specific heat, provided we can establish values of b and n.
As to the cluster size n, the most obvious course is to require that

the gas density and compressibility are appropriate for an ideal gas mix-

ture of the monomer and cluster. Thus

= —P—M = ml {3 (N
P~ =t T ™) (46)

subject to the equilibrium condition
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p]n xn
K = —— = 5— pn-l, (47)
P Pn n

Where p,, p, are the partial pressures of the monomer and cluster, P is
1 n :

the total pressure, while the equilibrium constant K, is a function of

p

temperature alone.
After straightforward partial differentiation followed by considerable
algebra, we find that
RT (a_r_e) .
n o= —Y \OIPJT (48)

| L B
RT

In figure 14 experimental thermal conductivities of carbon dioxide are
compared with values calculated from equations (37), (42) and (45). The
normal contribution to the heat conductivity,ikf, was taken from the dashed
curve of figure 12. The calculations have been made for b = 1.35 (closest
packing, coordination number 12) and b = 3 (diamond lattice). There is
qualitative agreement with experiment; predicted conductivities are of the
right order of magnitude and show the correct density dependence. If one
believes the model, it would seem that the larger clusters are more compact
and the smaller ones more loosely organized.

What is the asymptotic behavior as T-»T.? The compressibility diverges

L/3

as {T-T.| so that n will diverge in the same fashion and Dy_./D will tend
c in .

to zero as IT-TCIB/S. The specific heat also diverges as 'T‘Tci-h/B, so
that we predict that the heat conductivity will diverge as IT'TCI-A/9-

But we have already seen that the conductivity diverges more rapidly, as
_+ |~-2/3
lT |77,
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We can apply an ad hoc fix by assuming that b varies as n']/“, which

gives the correct asymptotic behavior. Consequently we replace equation

(45) by

2 5
e - ] 0]

where the constant 2.1 has been chosen to give a good fit to the experi-
mental data.

Calculations for which equation (45) was replaced by equation (49)
are compared with experiment in fugure 15. The agreement between theory
and experiment is now rather good. The most serious discrepancy is in the
vicinity of the maximum in the 31.2°C and there is an indication that the
experimental data may be somewhat too high in that region -see figure 13.
Thus equations (42), (48) and (49) would appear to provide a reasonable
means of estimating the anomalous increase in heat conductivity in the
critical region.

This result should be directly applicable to steam. The skeleton
tables do not recognize any heat conductivity anomaly in the critical region.
Yet there is no reason to believe that steam is any way unusual in this
regard. Indeed, there seems to be nothing unusual about the thermodynamic
anomalies of steam in the critical region. Steam behaves very much like
other gases (109). Specifically, equations (42), (48) and (49) should be
directly applicable to steam. In the absence of experimental data these
equations can be used to estimate the thermal conductivity anomaly from the

specific heat and compressibility. The quantityf;D can be estimated from
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the low density viscosity near the critical temperature:

(2,2)*
/9"_0 = %,‘%(-,-T,.g 1.32. (50)

This is a good approximation for most realistic intermolecular force laws.
The critical anomaly in viscosity if any, seems to be small and can

be ignored for practical engineering purposes.

THE LIQUID STATE

The theory of the liquid state is an area of very active research
at the present time, but as yet we have not achieved a truly quantitative
description even for simple fluids without\internal structure ~in other
words, the noble gases. Thus in introducing an article on approximate
theories of the liquid state de Boer and Uhlenbeck (110) assert "'In our
opinion the article shows clearly how much, or perhaps one should say how
little, one knows at present about the liquid state: the theory of liquids
is still one of the unsolved problems in statistical mechanics."

The article in question concerned equilibrium properties. One might
suspect that the situation with respect to the transport coefficients would
be no better. This suspicion is confirmed by a statement made by Zwanzig
(111) in reviewing a new book on the theory of simple dense fluids:
""Numerical calculations of viscosity, thermal conductivity, and diffusion
are compared with experiment, and agreement is typically no better than
within a factor of two. (This may be not much better than one can get
from dimensional analysis and the simplest of physical pictures.)" It

might be added that this modest result is achieved at the expense of a
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rather considerable numerical effort.

This is the situation with regard to simpie fluids. Thus it is ob-
vious that theory has virtually nothing to offer in describing water. The
water molecule has internal energy states and a large dipole moment as well.

These will certainly lead to much further complexity.

CONCLUDING REMARKS

Statistical mechanical theories of transport properties can help in
correlating and selecting properties of steam under many conditions where
experimental data are available. And theory can make reasonable pre-
dictions for some regimes in which there is no data.

The theory for the dilute monatomic gas is well developed and applies
well to the noble gases. Thus one can predict heat conductivities of
these gases from their viscosities. Certain discrepancies amongst various
experimental determinations of the viscosity of steam can be in a large
measure resolved by reexamining the data of investigators who also measured
the viscosity of argon. In this fashion it is possible, in essence, to
recalibrate their apparatus based on recent and more reliable viscosities
for this gas. A similar procedure reduces discrepancies in the case of
the heat conductivity also. The theory for polyatomic gases is not yet able
to make predictions reliable enough to choose among conflicting experimental
data.

There are no data on the properties of steam at temperatures above
2000°C where dissociation occurs, Here theory must be used and an order

of magnitude increase in the heat conductivity due to dissociation reactions
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is to be expected. Predicted properties may be in error by roughly twenty
percent.

Turning to the moderately dense gas, recent theoreticail deveiopmeits
indicate the correct mathematical form for the first few terms in the
series expansion for the transport coefficients as a function of density.
These include, first a constant (the dilute gas viscosity or heat conduc-
tivity), next a.term: proportional to density followed by terms proportional
to{o2 and lenf. The nature of higher terms is not known. This form |
should be applied in correlating properties of steam. On the other hand,
theory is not yet able to predict the values of the coefficients of the
terms in these density expansions.

In the critical region there is an anomaly in the heat conductivity.
It tends toward infinity as the critical point is approached. A simple
theory based on the diffusion and dissociation of large clusters can be
adjusted to make quantitative predictions of this heat conductivity anomaly
for steam. (There is as yet no reliable experimental data on steam very
close to the critical point.)

The theory of the liquid state has not advanced sufficiently to be

useful for predicting 6r correlating the properties of water.
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